EF3 – Model-Based Imaging

Project

EF3-2

Model-based 4D reconstruction of subcellular structures

Project Heads

Peter Hiesinger, Max von Kleist, Steffen Prohaska, Martin Weiser

Project Members

David Knötel (ZIB)

Project Duration

01.01.2019 – 31.12.2021

Located at

ZIB

Description

The brain development of flies (Drosophila) is being observed through 4D (3D + time) 2-photon microscopy. The reconstruction of subcellular structures, here filopodia sprouting from a growth cone, is a challenging task currently done semi-automatically with huge manual effort [1]. We aim at reducing the required human labour by using quantitative models of growth cone and filopodia geometry and dynamics [2] for a more robust and consistent algorithmic identification of subcellular structures. Some of the used methods comprise Bayesian inference, optimization, segmentation using convolutional neural networks, and stochastic modelling.

Data description

  • Brain development of flies (Drosophila) is being observed through 4D (3D + time) 2-photon microscopy
  • 60 timesteps over 1h including multiple growth cones
  • Filopodia are attached to a growth cone

 

Goal

Dramatic increase of image analysis throughput by model-based filopodia segmentation and tracking compared to semi-automatic reconstruction algorithm previously created at ZIB.

Combining microscopy data and growth dynamics models into a model based filopodia reconstruction loop.

 

Main framework

Use Bayesian inference methods for filopodia reconstruction and tracking that can respect user-provided constraints. The prior compares a potential filopodia model to previously known filopodial length dynamics while the likelihood term compares the model to the dataset at hand. Stochastic models based on reconstructed data (using the semi-automatic algorithm) are available for filopodial growth and for synapse formation. Here, only the growth dynamics are relevant and the conditional length distribution is modeled as a sum of Laplace distributions with an exponential vanishing probability (dependent on the length in previous timestep). We use reconstructions generated by the semi-automatic algorithm as training data for a U-Net based Deep-CNN semantic segmentation of filopodia. Additionally, we aim to include topological information into the segmentation framework.

Selected Publications

[1] J. Brummer, V.J. Dercksen, M.N. Ozel, A. Kulkarni, S. Prohaska, D. Baum, P.R. Hiesinger. Semi-automatic Reconstruction and Analysis of Filopodia Dynamics in 4D 2-Photon Microscopy Images. In preparation, 2020.

[2] M.N. Özel, A. Kulkarni, A. Hasan, J. Brummer, M. Moldenhauer, I.M. Daumann et al. Serial synapse formation through filopodial competition for synaptic seeding factors. Developmental cell, 50(4):447–461, 2019.

Selected Pictures

Transparent surface visualization of a growth cone and corresponding axon (on the left side) for one timestep. Filopodia reconstructions are represented as colored lines, e.g. the red line in the top part.

Please insert any kind of pictures (photos, diagramms, simulations, graphics) related to the project in the above right field (Image with Text), by choosing the green plus image on top of the text editor. (You will be directed to the media library where you can add new files.)
(We need pictures for a lot of purposes in different contexts, like posters, scientific reports, flyers, website,…
Please upload pictures that might be just nice to look at, illustrate, explain or summarize your work.)

As Title in the above form please add a copyright.

And please give a short description of the picture and the context in the above textbox.

Don’t forget to press the “Save changes” button at the bottom of the box.

If you want to add more pictures, please use the “clone”-button at the right top of the above grey box.