Project Heads
Péter Koltai, Nicolas Perkowski
Project Members
Ilja Klebanov
Project Duration
01.04.2021 − 31.12.2024
Located at
FU Berlin
We propose combining recent advances in the computation of conditional (posterior probability) distributions via Hilbert space embedding with the stochastic analysis of partially observed dynamical systems —exemplified by ensemble Kalman methods— to develop, analyse, and apply novel learning methods for profoundly nonlinear, multimodal problems.
Given a hidden Markov model, the task of filtering refers to the inference of the current hidden state from all observations up to that time. One of the most prominent filtering techniques is the so-called ensemble Kalman filter (EnKF), which approximates the filtering distribution by an ensemble of particles in the Monte Carlo sense.
While its prediction step is straightforward, the analysis or update step (i.e. the incorporation of the new observation via Bayes’ rule) is a rude approximation by the Gaussian conditioning formula, which is exact in the case of Gaussian distributions and linear models, but, in general, cannot be expected to reproduce the filtering distribution in the large ensemble size limit.
On the other hand, as we have found in our previous Math+ project (TrU-2), the Gaussian conditioning formula is exact for any random variables after embedding them into so-called reproducing kernel Hilbert spaces (RKHS), a methodology widely used by the machine learning community under the term “conditional mean embedding”.
Therefore, the question of how these two approaches can be combined arises quite naturally. The aim of this project is to eliminate the second source of error described above (in addition to the Monte Carlo error) by embedding the EnKF methodology into RKHSs. Further advantages of such an embedding is the potential to treat nonlinear state spaces such as curved manifolds or sets of images, graphs, strings etc., for which the conventional EnKF cannot even be formulated.
External Website
Related Publications
Related Pictures