Project Heads
Jan Hermann (until 10/2022), Jens Eisert, Frank Noé
Project Members
Zeno Schätzle
Project Duration
01.04.2021 − 31.03.2024 (extended until 31.07.2024)
Located at
FU Berlin
Accurate and general solution of the electronic Schrödinger equation is one of the great challenges in computational materials science, since it provides straightforward access to many material properties. Among the numerous approximate methods, quantum Monte Carlo provides a platform for in-principle exact numerical solutions at favorable computational cost, but in practice is limited by the flexibility of the available wave function ansatzes. The cornerstone of this issue is a faithful representation of the so-called nodal surface, on which the antisymmetric electronic wave function changes sign. This project aims to establish a novel computational technique based on deep neural networks, called deep backflow, as a general solution to the nodal-surface representation problem. This will overcome the only existing fundamental limitation to the accuracy of quantum Monte Carlo calculations, opening the possibility of highly accurate electronic-structure calculations for much larger systems than previously possible.
External Website
Related Publications
Related Pictures