AA2 – Materials, Light, Devices

Project

AA2-16

Tailored Entangled Photon Sources for Quantum Technology

Project Heads

Sven Burger, Stephan Reitzenstein

Project Members

Felix Binkowski

Project Duration

01.04.2022 − 31.03.2025

Located at

ZIB

Description

The project aims at developing and employing numerical methods for simulation and optimization of coupled emitter – cavity systems, and to use these methods for designing systems of QDs coupled to integrated, high-Q microcavities for state engineering. Further we aim at coupling efficiency enhancement for integrated, waveguide-coupled setups. A main goal is the investigation and development of contour integration based methods for eigenvalue solvers and for eigenmode expansion, and their application to topical devices for photonic quantum technology. A schematics of a contour integration based modal expansion is depicted in Fig. 1.

Research results of this project include the numerical optimization of fiber-coupled single-photon sources [1], a new method to compute eigenvalue sensitivities [2], as well as applications to systems of emitters and plasmonic and nanooptical resonators [3,4,5,6].

Further, research data and software have been made available via open access data publications [7,8].

Related Publications

  1. Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots, Lucas Bremer, Carlos Jimenez, Simon Thiele, Ksenia Weber, Tobias Huber, Sven Rodt, Alois Herkommer, Sven Burger, Sven Höfling, Harald Giessen, Stephan Reitzenstein. Opt. Express 30, 15913 (2022)
  2. Computation of eigenfrequency sensitivities using Riesz projections for efficient optimization of nanophotonic resonators, Felix Binkowski, Fridtjof Betz, Martin Hammerschmidt, Philipp-Immanuel Schneider, Lin Zschiedrich, Sven Burger, Commun. Phys. 5, 202 (2022)
  3. Crossing of the branch cut: the topological origin of a universal 2π-phase retardation in non-Hermitian metasurface, Remi Colom, Elena Mikheeva, Karim Achouri, Jesus Zuniga-Perez, Nicolas Bonod, Olivier J. F. Martin, Sven Burger, Patrice Genevet, arXiv:2202.05632 (2022)
  4. Enhanced Purcell factor for nanoantennas supporting interfering resonances, Remi Colom, Felix Binkowski, Fridtjof Betz, Yuri Kivshar, Sven Burger, Phys. Rev. Research 4, 023189 (2022)
  5. Chiral bio-inspired plasmonics: a paradigm shift for optical activity and photochemistry, Oscar Avalos-Ovando, Eva Yazmin Santiago, Artur Movsesyan, Xiang-Tian Kong, Peng Yu, Lucas V. Besteiro, Larousse Khosravi Khorashad, Hiromi Okamoto, Joseph M. Slocik, Miguel Correa-Duarte, Miguel Comesana-Hermo, Tim Liedl, Gil Markovich, Sven Burger, Alexander O. Govorov, ACS Photonics 9, 2219 (2022)
  6. Plasmonic nanocrystals with complex shapes for photocatalysis and growth: Contrasting anisotropic hot-electron generation with the photothermal effect, Artur Movsesyan, Eva Yazmin Santiago, Sven Burger, Miguel A. Correa-Duarte, Lucas V. Besteiro, Zhiming Wang, Alexander O. Govorov, Adv. Opt. Mater. 10, 2102663 (2022)
  7. Source code and simulation results for nanoantennas supporting an enhanced Purcell factor due to interfering resonances, Remi Colom, Felix Binkowski, Fridtjof Betz, Yuri Kivshar, Sven Burger, Zenodo, DOI:10.5281/zenodo.6565850 (2022)
  8. Source code and simulation data for Computation of eigenfrequency sensitivities using Riesz projections for efficient optimization of nanophotonic resonators, Felix Binkowski, Fridtjof Betz, Martin Hammerschmidt, Philipp-Immanuel Schneider, Lin Zschiedrich, Sven Burger, Zenodo, DOI:10.5281/zenodo.6614951 (2022)

Related Pictures

Fig. 1. Schematics: Contour integrations in the complex eigenvalue plane. The contours (dashed lines) encircling resonance frequencies (red crosses) allow to determine the corresponding modal fields, the outer contour (solid line) allows for evaluating the background contribution to the modal expansion of the field caused by the emitter at a real frequency.